Calculating confidence intervals for impact numbers

نویسندگان

  • Mandy Hildebrandt
  • Ralf Bender
  • Ulrich Gehrmann
  • Maria Blettner
چکیده

BACKGROUND Standard effect measures such as risk difference and attributable risk are frequently used in epidemiological studies and public health research to describe the effect of exposures. Recently, so-called impact numbers have been proposed, which express the population impact of exposures in form of specific person or case numbers. To describe estimation uncertainty, it is necessary to calculate confidence intervals for these new effect measures. In this paper, we present methods to calculate confidence intervals for the new impact numbers in the situation of cohort studies. METHODS Beside the exposure impact number (EIN), which is equivalent to the well-known number needed to treat (NNT), two other impact numbers are considered: the case impact number (CIN) and the exposed cases impact number (ECIN), which describe the number of cases (CIN) and the number of exposed cases (ECIN) with an outcome among whom one case is attributable to the exposure. The CIN and ECIN represent reciprocals of the population attributable risk (PAR) and the attributable fraction among the exposed (AFe), respectively. Thus, confidence intervals for these impact numbers can be calculated by inverting and exchanging the confidence limits of the PAR and AFe. EXAMPLES We considered a British and a Japanese cohort study that investigated the association between smoking and death from coronary heart disease (CHD) and between smoking and stroke, respectively. We used the reported death and disease rates and calculated impact numbers with corresponding 95% confidence intervals. In the British study, the CIN was 6.46, i.e. on average, of any 6 to 7 persons who died of CHD, one case was attributable to smoking with corresponding 95% confidence interval of [3.84, 20.36]. For the exposed cases, the results of ECIN = 2.64 with 95% confidence interval [1.76, 5.29] were obtained. In the Japanese study, the CIN was 6.67, i.e. on average, of the 6 to 7 persons who had a stroke, one case was attributable to smoking with corresponding 95% confidence interval of [3.80, 27.27]. For the exposed cases, the results of ECIN = 4.89 with 95% confidence interval of [2.86, 16.67] were obtained. CONCLUSION The consideration of impact numbers in epidemiological analyses provides additional information and helps the interpretation of study results, e.g. in public health research. In practical applications, it is necessary to describe estimation uncertainty. We have shown that the calculation of confidence intervals for the new impact numbers is possible by means of known methods for attributable risk measures. Therefore, estimated impact numbers should always be complemented by appropriate confidence intervals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved confidence intervals in quantitative trait loci mapping by permutation bootstrapping.

The nonparametric bootstrap approach is known to be suitable for calculating central confidence intervals for the locations of quantitative trait loci (QTL). However, the distribution of the bootstrap QTL position estimates along the chromosome is peaked at the positions of the markers and is not tailed equally. This results in conservativeness and large width of the confidence intervals. In th...

متن کامل

Effects of adjusting for censoring on meta-analyses of time-to-event outcomes.

BACKGROUND Systematic reviews of published time-to-event outcomes commonly rely on calculating odds ratios (OR) at fixed points in time and where actual numbers at risk are not presented. These estimates are usually based on the total numbers included in the published analysis and take no account of censoring. We have assessed the impact of adjusting for censoring on weighting, estimates and st...

متن کامل

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

Calculating confidence intervals for prediction error in microarray classification using resampling.

Cross-validation based point estimates of prediction accuracy are frequently reported in microarray class prediction problems. However these point estimates can be highly variable, particularly for small sample numbers, and it would be useful to provide confidence intervals of prediction accuracy. We performed an extensive study of existing confidence interval methods and compared their perform...

متن کامل

A SAS Macro for Calculating Bootstrapped Confidence Intervals About a Kappa Coefficient

Cohen’s kappa coefficient has become a standard method for measuring the degree of agreement between two raters. Confidence intervals for kappa and weighted kappa based on its asymptotic variance are available in the SAS system through the FREQ procedure. However, this variance can become unreliable as sample size decreases or as kappa approaches unity. This paper presents a SAS macro for calcu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Medical Research Methodology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2006